A Gleason Formula for Ozeki Polynomials

نویسندگان

  • YoungJu Choie
  • Patrick Solé
چکیده

By using the structure theory of Jacobi forms we derive a simple expression for Ozeki polynomials of Type II self-dual binary codes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Polynomials of a Graph

In this paper, we are presented a formula for the polynomial of a graph. Our main result is the following formula: [Sum (d{_u}(k))]=[Sum (a{_kj}{S{_G}^j}(1))], where, u is an element of V(G) and 1<=j<=k.

متن کامل

Ozeki Polynomials and Jacobi Forms

A Jacobi polynomial was introduced by Ozeki. It corresponds to the codes over F2. Later, Bannai and Ozeki showed how to construct Jacobi forms with various index using a Jacobi polynomial corresponding to the binary codes. It generalizes Broué-Enguehard map. In this paper, we study Jacobi polynomial which corresponds to the codes over F2f . We show how to construct Jacobi forms with various ind...

متن کامل

Tutte polynomials of wheels via generating functions

We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.

متن کامل

Complete coset weight distributions of second order Reed - Muller code of length 64 Michio Ozeki and Katsushi Waki

In this paper we determine the complete coset weight distributions of the second order Reed-Muller code RM(2, 6) of length 64. Our method fully uses the interaction between the Jacobi polynomials for the code RM(2, 6) and those of the dual code RM(3, 6). The method also employs the group theoretic reduction processes to diminish the runtimes of computing the Jacobi polynomials for the code RM(2...

متن کامل

Chromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs

In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 98  شماره 

صفحات  -

تاریخ انتشار 2002